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Abstract. The satellite remote-sensing aerosol optical depth (AOD) and meteorological elements 7 

were employed to invert PM2.5 in order to control air pollution more effectively. This paper proposes 8 

a restricted gradient-descent linear hybrid machine learning model (RGD–LHMLM) by integrating a 9 

random forest (RF), a gradient boosting regression tree (GBRT), and a deep neural network (DNN) 10 

to estimate the concentration of PM2.5 in China in 2019. The research data included Himawari-8 AOD 11 

with high spatiotemporal resolution, ERA-5 meteorological data, and geographic information. The 12 

results showed that, in the hybrid model developed by linear fitting, the DNN accounted for the largest 13 

proportion, whereas the weight coefficient was 0.62. The R2 values of RF, GBRT, and DNN were 14 

reported 0.79, 0.81, and 0.8, respectively. Preferably, the generalization ability of the mixed model 15 

was better than that of each sub-model, and R2 reached 0.84, whereas RMSE and MAE were reported 16 

12.92 µg/m3 and 8.01 µg/m3, respectively. For the RGD-LHMLM, R2 was above 0.7 in more than 70% 17 

of the sites, whereas RMSE and MAE were below 20 µg/m3 and 15 µg/m3, respectively, in more than 18 

70% of the sites due to the correlation coefficient having seasonal difference between the 19 

meteorological factor and PM2.5. Furthermore, the hybrid model performed best in winter (mean R2 20 

was 0.84) and worst in summer (mean R2 was 0.71). The spatiotemporal distribution characteristics 21 

of PM2.5 in China were then estimated and analyzed. According to the results, there was severe 22 

pollution in winter with an average concentration of PM2.5 being reported 62.10 µg/m3. However, 23 

there was slight pollution in summer with an average concentration of PM2.5 being reported 47.39 24 

µg/m3. The findings also indicate that North China and East China are more polluted than other areas 25 

and that their average annual concentration of PM2.5 was reported 82.68 µg/m3. Moreover, there was 26 

relatively low pollution in Inner Mongolia, Qinghai, and Tibet, for their average PM2.5 concentrations 27 

were reported below 40 µg/m3. 28 
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1 Background 1 

 In recent years, pollutants have been discharged increasingly in China where air pollution is 2 

becoming worse than ever before due to rapid urbanization and industrialization (Wang et al., 2019a). 3 

The fine particulate matter (PM2.5) with a diameter below 2.5μm is the main component of air pollutants 4 

having considerable impacts on human health, atmospheric visibility, and climate change (Gao et al., 5 

2015;Pan et al., 2018;Pun et al., 2017). The global concern about PM2.5 has increased significantly since 6 

it was listed as a top carcinogen (Apte et al., 2015;Lim et al., 2020). Currently, ground monitoring is the 7 

most efficient method of measuring PM2.5 (Yang et al., 2018). However, monitoring stations are not 8 

evenly distributed due to terrain and construction costs; therefore, it is difficult to obtain a wide range of 9 

accurate PM2.5 concentration data (Han et al., 2015). To solve the problem, the method of estimating 10 

PM2.5 with satellite remote-sensing was developed. Satellite remote-sensing is characterized by a wide 11 

coverage and high resolution (Hoff and Christopher, 2009;Xu et al., 2021). There is also a high 12 

correlation between AOD, obtained from satellite remote sensing inversion, and PM2.5; therefore, AOD 13 

is a very effective method of monitoring the spatiotemporal concentration characteristics of PM2.5. 14 

 After Engel-Cox et al. (2004) proposed using satellite AOD to estimate PM2.5 concentration, several 15 

studies are reported in the literature to address this theory. Based on the regression model, Liu et al. (2005) 16 

introduced AOD, boundary layer height, relative humidity, and geographical parameters as the main 17 

controlling factors to estimate PM2.5 in the eastern part of the United States, and the verification 18 

coefficient R2 obtained was 0.46. Tian and Chen (2010) used AOD, PM2.5, and meteorological parameters 19 

in Southern Ontario, Canada, to establish a semi-empirical model to predict PM2.5 concentration per hour, 20 

and the verification coefficient R2 obtained in rural and urban areas was 0.7 and 0.64, respectively. Hu et 21 

al. (2013) proposed a geography weighted regression model to estimate the surface PM2.5 concentration 22 

in southeastern America by combining AOD, meteorological parameters, and land use information. Their 23 

model average R2 was 0.6. Lee et al. (2012) believed that the satellite remote sensing AOD data would 24 

be interfered by clouds and snow and ice, and the reliability of the data was questionable. They proposed 25 

a mixed model based on AOD calibration to predict the ground PM2.5 concentration in New England, 26 

USA, and achieved good results (R2 = 0.83). Combined with MODIS AOD and ground observation data, 27 

Lv et al. (2017) estimated the daily surface PM2.5 concentration in the Beijing-Tianjin-Hebei region and 28 

improved the data resolution to 4 km. The data used in these early studies are AOD products obtained 29 
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from polar-orbit satellite sensors. The daily observation frequency is limited. Due to the influence of 1 

cloud and ground reflection, the dynamic change information of PM2.5 cannot be obtained. As a result, 2 

geostationary satellite observations can be used to overcome the problem of low temporal resolution for 3 

estimating surface PM2.5 (Emili et al., 2010).  4 

The Himawari-8 satellite commonly used in the Asia-Pacific region is a geostationary satellite 5 

launched by the Japan Meteorological Agency in 2014. The observation frequency is 10 minutes, and the 6 

observation results can characterize the aerosol and provide AOD data with a resolution of 5 km (Bessho 7 

et al., 2016;Yumimoto et al., 2016). Due to its excellent performance, some scholars use Himawari-8 8 

data to estimate ground PM2.5.Wang et al. (2017) proposed an improved linear model, introduced AOD, 9 

meteorological parameters, geographic information to estimate PM2.5 in the Beijing-Tianjin-Hebei region, 10 

and the verification coefficient R² was 0.86. Zhang et al. (2019b) used Himawari-8 hourly AOD product 11 

to estimate ground PM2.5 in China's four major urban agglomerations. The results showed significant 12 

diurnal, seasonal, and spatial changes and improved the temporal resolution of estimating PM2.5 13 

concentration to the hourly level. 14 

As research into ground-based PM2.5 estimation deepens, traditional linear or nonlinear models 15 

cannot meet the requirements of large-scale estimation and are gradually being replaced by machine 16 

learning algorithms with strong nonlinear fitting ability. Liu et al. (2018) combined Kriging interpolation 17 

and random forest algorithm to obtain the concentration of high-resolution ground PM2.5 in the United 18 

States. To demonstrate the accuracy and superiority of the proposed method, the results were compared 19 

with the PM2.5 concentration in ground measurement stations. Chen et al. (2019) stacked and predicted 20 

PM2.5 concentration based on a variety of machine learning algorithms, discussed the influence of 21 

meteorological factors on PM2.5 and achieved an R2 = 0.85. Li et al. (2017a) established a GRNN model 22 

for the whole of China to estimate PM2.5 concentration, and the results demonstrated that the performance 23 

of the deep learning model was better than that of the traditional linear model. 24 

A large number of existing studies in the broader literature have examined the estimation of ground 25 

PM2.5 concentrations using satellite remote sensing AOD. However, the performance of PM2.5 estimation 26 

models established in the existing studies varies greatly and the performance of the models is not stable 27 

in different seasons and regions. To overcome this limitation, in this paper, a linear hybrid machine 28 

learning model (RGD-LHMLM) based on random forest (RF), gradient lifting regression tree (GBRT), 29 

and deep neural network (DNN) is proposed to estimate ground PM2.5 concentration. The model 30 
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performance is evaluated from time and space to analyze its causes. Finally, spatiotemporal distribution 1 

of PM2.5 concentration in China in 2019 is obtained. 2 

2 Data 3 

2.1 Ground PM2.5 Monitoring Data 4 

 PM2.5 concentration data for 2019 used in this study are available from the China Environmental 5 

Monitoring Center's Air Quality Real-Time Publication System. The system extracts hourly mean PM2.5 6 

data. By the end of 2019, China had 1641 monitoring stations built and in operation. Figure 1 shows the 7 

spatial distribution of monitoring stations in China. 8 

 9 
Figure 1 Distribution diagram of Environmental monitoring stations in China (2019) 10 

2.2 Satellite AOD Data 11 

 The Himawari Imager (AHI) on the Himawari-8 satellite launched by the Japan Meteorological 12 

Agency is a highly improved multi-wavelength imager. It adopts the whole disk observation method and 13 

has 16 visible and infrared channels. It has the characteristics of fast imaging speed, flexible observation 14 

area, and time. The Level-3-hour AOD product, released by the Japan Aerospace Space Agency (JAXA), 15 

provides 500 nm AOD data with a spatial resolution of 5km during the day. In previous studies (Zang et 16 

al., 2018), Himawari-8 AOD was compared with the AOD data of AERONET (Aerosol Robotic Network) 17 

in China and achieved good performance. The AOD data used in this study is the Himawari-8 Level 3-18 

hour AOD data in 2019 obtained from the Himawari Monitor website of the Japan Meteorological 19 
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Agency. 1 

2.3 Meteorological Data 2 

 ERA-5 reanalysis data is an hourly collection of atmospheric and land-surface meteorological 3 

elements since 1979 that the European Centre (ECMWF) has used its prediction model and data 4 

assimilation system to "Reanalyse" archived observations. Data used in this paper include surface relative 5 

humidity (RH, expressed as a percentage), air temperature at a height of 2 m (TM, expressed as K), Wind 6 

speed (U10, V10, in m/s), surface pressure (SP, in Pa), boundary layer height (BLH, in m) and cumulative 7 

precipitation (RAIN, in m) at 10 m above the ground. A series of studies has indicated that these 8 

parameters can affect the concentration of PM2.5 (Fang et al., 2016;Guo et al., 2017;Li et al., 2017b;Wang 9 

et al., 2019b). 10 

2.4 Auxiliary Data 11 

 The auxiliary data used in this study include high and low vegetation index (LH, LL), 12 

ground elevation data (DEM), and population density data (PD). The high and low vegetation 13 

index is derived from ERA5 reanalysis data, which respectively represent half of the total green 14 

leaf area per unit level ground area of high and low vegetation type. The ground elevation data 15 

are derived from SRTM-3 measurements jointly conducted by NASA and the Defense 16 

Department's National Mapping Agency (NIMA), with a spatial resolution of 90 m. The 17 

population data come from the 2015 United Nations Adjust Population Density data provided 18 

by NASA's Center for Socio-Economic Data and Applications (SEDAC), which is based on 19 

national censuses and adjusted for relative spatial distribution. 20 

3 Method 21 

3.1 Random Forest 22 

 Random Forest (RF) is built based on the combination of the Bagging algorithm and decision tree, 23 

which is an extended variant of the parallel ensemble learning method (Stafoggia et al., 2019). To 24 

construct a large number of decision trees, the random forest model takes multiple samples of the sample 25 

data. In the decision tree, the nodes are divided into sub-nodes by using the randomly selected optimal 26 

features until all the training samples of the node belong to the same class. Finally, all the decision trees 27 
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are merged to form the random forest. This method has proved to be effective in regression and 1 

classification problems and is one of the most well-known Machine learning algorithms used in many 2 

different fields (Yesilkanat, 2020). 3 

3.2 Gradient Boosted Regression Trees 4 

 Different from the random forest, Gradient Boosting Regression Tree (GBRT) is based on Boosting 5 

algorithm and decision tree. The basic principle of GBRT is to construct M different basic learners 6 

through multiple iterations, and constantly add the weight of the learners with a small error probability, 7 

to eventually generate a strong learner (Johnson et al., 2018). The core of this method is that after each 8 

iteration, a learner will be built in the direction of residual reduction (gradient direction) to make the 9 

residual decrease in the gradient direction (Schonlau, 2005). The basic learner of GBRT is the regression 10 

tree in the decision tree. During the prediction, a predicted value is calculated according to the model 11 

obtained. The minimum square root error is used to select the optimal feature to split the dataset, and the 12 

average value of the child node is then taken as the predicted value. 13 

3.3 Deep Neural Networks 14 

 Deep Neural Networks (DNN) is a supervised learning technique that uses a backpropagation 15 

algorithm to minimize the loss function. It adjusts the parameters through an optimizer, and has high 16 

computational power, making it ideal for solving classification and regression problems (Wang and Sun, 17 

2019). The structure of DNN includes an input layer, an output layer, and several hidden layers. Each 18 

layer takes the output of all nodes of the previous layer as the input, and this process requires activation 19 

functions. Compared with other activation functions, the linear rectifying function (ReLU) has the 20 

advantages of simple derivation, faster convergence, and higher efficiency. At the same time, among the 21 

adaptive learning rate optimizers, the Adamx optimizer performs the best. It not only has the advantages 22 

of Adam in determining the learning rate range and having stable parameters in each iteration but also 23 

simplifies the method of defining the upper limit range of the learning rate and improves the iteration 24 

efficiency (Diederik and Jimmy, 2015). Therefore, in this paper, we selected the Adamx optimizer and 25 

ReLU activation function to train the DNN. 26 
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3.4 Model Establishment and Verification 1 

 After data processing, RF, GBRT, and DNN are used for modeling. To prevent model parameters 2 

from being controlled by large or small range data and speed up the convergence rate of the model, the 3 

data must be normalized before starting the training process. Finally, the three optimal sub-models are 4 

linear combined to achieve the final mixed model. To verify the model performance, this paper uses the 5 

"10-fold cross-validation" method (Adams et al., 2020). In this method, the data is split into 10 copies, 9 6 

copies for training and 1 copy for verification; this process is repeated 10 times, and then the average of 7 

the 10 predictions is computed as the final result. Finally, the predicted value and the measured value are 8 

fitted linearly. At the same time, several indicators are used to evaluate the model, including the mean 9 

absolute error (MAE, when the predicted value and the true value are exactly equal to 0, that is, perfect 10 

model; The larger the error, the greater the value), the root mean square error (RMSE, when the predicted 11 

value and the real value are completely consistent is equal to 0, that is, the perfect model; The larger the 12 

error, the greater the value), the slope of the fitting equation and the determination coefficient R2 (the 13 

greater the value, the better the model fitting effect). 14 

 15 

Figure 2 Schematic diagram of model 16 

4 Results and Discussion 17 

4.1 Modeling Results 18 

 According to the above steps, the mixed model RGD-LHMLM is obtained through modeling 19 
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verification, and is compared with RF, GBRT, and DNN. The fitting and verification accuracy results of 1 

each model are shown in Table 1. 2 

Table 1 Comparison of model accuracy 3 

Model  Fitting  
 

Validation  

 

R² RMSE MAE R² RMSE MAE 

RF 0.95 6.99 4.05 0.79 14.89 9.33 

GBRT 0.96 6.87 4.52 0.81 14.09 9.18 

DNN 0.97 5.03 3.49 0.80 14.45 9.06 

RGD-LHMLM 0.98 4.39 3.00 0.84 12.92 8.01 

 4 

The PM2.5 inversion results of a single machine learning model show that DNN has the best 5 

inversion performance, followed by GBRT, and RF has the worst performance. The expression of the 6 

mixing model obtained after linear mixing is as follows: 7 

𝑃𝑀 . 0.25𝑃𝑀 . 0.17𝑃𝑀 . 0.62𝑃𝑀 . 2.13                  1  8 

The weight coefficient of DNN in the mixed model was the largest (0.62). The R2 of RGD-LHMLM in 9 

the training set was 0.98, and the RMSE was only 4.39 μg/m3, indicating that the model had an excellent 10 

data fitting effect. Meanwhile, the generalization ability of the mixed model is also good, with R2 of 0.84 11 

and RMSE of 12.92 μg/m3 on the validation data set. Compared with RF, GBRT, and DNN, the inversion 12 

performance of RGD-LHMLM is significantly improved. In other words, the combination of multiple 13 

models can improve the robustness and generalization ability of the model (Wolpert, 1992). The linear 14 

fitting equation coefficients between the predicted and measured values in the training set and the 15 

verification set were 0.98 and 0.84, respectively, indicating that the prediction accuracy of the model 16 

reached a high level. The fitting curve between the model predicted value and the real value is shown in 17 

Figure 3. The RGD-LHMLM model has the smallest degree of data dispersion, and the slope of the fitting 18 

line reaches 0.84, indicating that 84% of the prediction results are accurate, higher than the three sub-19 

models. 20 
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 1 

Figure 3 Accuracy of model Fitting and Validation (A: RF, B: GBRT, C: DNN, D: RGD-LHMLM) 2 

4.2 Model Performance Analysis 3 

4.2.1 Performance Analysis of Monitoring Station Model 4 

 The spatial performance of the model was analyzed by measuring R2, RMSE, and MAE at the 5 

monitoring stations. According to Figure 4, there are regional differences in the inversion performance 6 

of RGD-LHMLM. At all monitoring stations, the average R2 was reported 0.74, and R2 was above 0.7 at 7 

more than 70% of the stations, especially in the densely populated and industrially developed areas. The 8 

https://doi.org/10.5194/amt-2021-64
Preprint. Discussion started: 30 March 2021
c© Author(s) 2021. CC BY 4.0 License.



10 
 

model prediction accuracy was reported low (R2<0.6) in Xinjiang, Tibet, Qinghai, Western Sichuan, and 1 

a few other areas of Northeast China. The mean values of RMSE and MAE were reported 11.4 μg/m3 2 

and 8.01 μg/m3, respectively. In fact, the mean values of RMSE and MAE were below 20 μg/m3 and 15 3 

μg/m3 in more than 95% of stations, something showed a low estimation error. 4 

 5 
Figure 4 Model precision parameters (A)R2, (B)RMSE, (C)MAE and (D)Mean PM2.5 concentration site 6 

distribution 7 

  Based on the analysis of spatial differences in the RGD-LHMLM inversion performance, the 8 

following deductions can be made. First, the environmental monitoring stations in the central and eastern 9 

regions with better inversion performance were distributed densely, and there are large data available; 10 

therefore, the model had a satisfactory training effect. Moreover, data matching was lower in the western 11 

region than in other regions, something which resulted in model over-fitting and reduced accuracy 12 

(Zhang et al., 2018). Second, some areas of western and northeastern China are covered by snow and the 13 

Gobi Desert with high surface albedo. This reduces the accuracy of AOD obtained by satellite 14 

observation and brings errors to model training. Finally, the Himawari-8 scanning range is limited, and 15 

the satellite observation data obtained in Western China are limited in terms of quantity and accuracy. In 16 

general, the RGD-LHMLM has a satisfactory spatial performance, especially in areas with high annual 17 

average concentration of PM2.5; therefore, it can leave a good inversion effect. 18 
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4.2.2 Time-Scale Model Performance Analysis 1 

Figure 5 shows the inversion performance results of the hybrid model collected from January to 2 

December 2019. The model performed the worst in summer months because R2 was reported 0.73, 0.72, 3 

and 0.68, respectively; however, RMSE and MAE were only 9.37, 9.22, 8.26 μg/m3 and 6.59, 6.34, and 4 

5.91 μg/m3, respectively, due to the lower average concentration of PM2.5 in summer. Winter and autumn 5 

models gained better performance results with an average R2 over 0.8. However, in contrast to summer, 6 

the estimation errors of these two seasons were relatively large, with average RMSE of 20.10 μg/m3 and 7 

10.72 μg/m3 and average MAE of 11.20 μg/m3 and 7.25 μg/m3, respectively. The mean R2 was 0.74, 8 

whereas the mean RMSE and MAE were 13.71 μg/m3 and 8.39 μg/m3, respectively. 9 

 10 

Figure 5 Monthly model performance fitting scatter diagram in 2019 11 

The model performance differences were also analyzed to extract and rank the model features of 12 

RF and GBRT based on the feature importance. The higher the feature importance, the greater the 13 

contribution of factors to the model. Figure 6 shows that AOD, boundary layer height, 2 m surface 14 

temperature, and relative humidity had the greatest effect on the mixed model performance out of all 15 
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variable characteristic parameters. Accordingly, AOD is greatly affected by the fine particulate matter 1 

and is the main factor in the inversion of PM2.5. Changes of the boundary layer height can affect the 2 

diffusion ability of the atmosphere. If the boundary layer height is low, the accumulation of pollutants 3 

will be caused. At the same time, the 2 m surface temperature has a great impact on the boundary layer 4 

height (Miao et al., 2018). Finally, higher rates of atmospheric humidity can improve the fine particulate 5 

matter accumulation. 6 

 7 
Figure 6 Importance of model features (represent the contribution of feature factors to the model) 8 

The correlation coefficients between the monthly mean values of important meteorological 9 

parameters (AOD, BLH, TM and RH) and R2 were also analyzed. According to the results, the correlation 10 

coefficients between the meteorological parameters and PM2.5 were lower in summer. Furthermore, there 11 

are many rainy days and large cloud coverage, which is not conducive to satellite observation and 12 

decreases the accuracy of AOD data in summer. Therefore, the summer model performance is poor. There 13 

was a strong correlation between meteorological parameters and PM2.5 in autumn. There were also 14 

similar correlations between spring and winter; however, the winter model performed was better. The 15 

reasons can be interpreted as below. The winter temperature and boundary layer height are low, whereas 16 

the atmosphere is stable but not conducive to the diffusion of pollutants. Moreover, during the heating 17 

period in winter, pollutant emissions soar greatly and result in a sharp rise in the concentration of PM2.5. 18 

The increased pollution in winter ensures the quality and quantity of data, thereby improving the model 19 

performance effectively. 20 
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 1 

Table 2 Correlation coefficient between meteorological parameters with PM2.5 2 

Season AOD BLH TM RH 

Spring 0.47 -0.33 0.12 0.36 

Summer 0.42 -0.21 0.06 0.19 

Autumn 0.38 -0.29 0.24 0.41 

Winter 0.44 -0.33 0.12 0.35 

 3 

Figure 7 Variation trend of monthly average of meteorological parameters (AOD, BLH, TM, RH) and R2 4 

4.3 Temporal and Spatial Distribution Characteristics of PM2.5 Concentration in China 5 

In terms of spatial distribution, Shandong, Henan, Jiangsu, Anhui, as well as parts of Hubei and 6 

Hebei were the most polluted areas in China in 2019, with an annual average PM2.5 concentration of 7 

82.86 μg/m3. On the one hand, these areas are economically developed and densely populated, resulting 8 

in a large amount of pollutant emissions. On the other hand, the barrier of the peripheral mountains 9 

(Taihang Mountains, Qinling Mountains and the Southern Hills) leads to the accumulation of pollutants 10 

that are difficult to diffuse. Sichuan Basin is a rare area with a high PM2.5 value due to its unique 11 

topography (Zhang et al., 2019a), with an annual average PM2.5 concentration of 64.69 μg/m3. In addition, 12 

Inner Mongolia, Qinghai, Tibet and other places, the pollution level is low, the average annual PM2.5 13 

concentration is less than 40 μg/m3. 14 

PM2.5 concentration in China varies significantly with the seasons. As shown in Figure 8, PM2.5 15 

concentration in winter is the highest, with an average value of 62.10μg/m3. January 2019 was the most 16 
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polluted month in China, with the average PM2.5 concentration reaching 63.58μg/m3. The average PM2.5 1 

concentration was 47.39 μg/m3 in summer. The average concentration of PM2.5 in spring and autumn was 2 

54.21μg/m3 and 52.26 μg/m3, respectively, indicating similar levels of pollution. 3 

 4 
Figure 8 Monthly distribution of PM2.5 concentration in China in 2019 5 

5 Conclusion 6 

It is essential to collect the spatiotemporal evolution characteristics regarding the concentration of 7 

PM2.5 for air pollution prevention and containment. Based on the linear hybrid machine learning model, 8 

this paper used the AOD data of Himawari-8 to invert the concentration of PM2.5 in China and obtain its 9 

distribution characteristics. The model performance and inversion results are analyzed and summarized 10 

below: 11 

(1) In the RGD-LHMLM obtained from linear fitting, the DNN accounted for the largest proportion 12 

with a weight coefficient of 0.62. The R2 of RGD-LHMLM was 0.84, whereas its generalization ability 13 

was significantly better than that of a single model (DNN: 0.80; GBRT: 0.81; RF: 0.79). Moreover, 14 
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RMSE and MAE were 12.92 μg/m3 and 8.01 μg/m3, respectively. 1 

(2) The RGD-LHMLM was spatially stable, with R2>0.7 in more than 70% of sites as well as 2 

RMSE<20 μg/m3 and MAE<15μg/m3 in more than 95% of sites. These sites are mainly located in densely 3 

populated and industrially developed areas. The correlation difference between the inversion factor and 4 

PM2.5 in various seasons would lead to seasonal variations in the model performance. In addition, the 5 

performance was the worst in summer with an average R2 of 0.71; however, winter showed the best 6 

performance with an average R2 of 0.84. 7 

(3) Changes in the spatiotemporal characteristics were obvious in the concentration of PM2.5 in 8 

China. In other words, North China and East China had the highest concentration of PM2.5 with an 9 

average annual concentration of 82.86 μg/m3, whereas Inner Mongolia, Qinghai, Tibet, and other regions 10 

had low pollution levels with an average annual concentration of PM2.5 below 40 μg/m3. In winter, the 11 

concentration of PM2.5 was higher with an average of 62.10 μg/m3, whereas the pollution was lighter in 12 

summer with an average concentration of PM2.5 being reported 47.39 μg/m3. 13 

In conclusion, the RGD-LHMLM can accurately measure the concentration of PM2.5 and perform 14 

the seasonal evolution of pollutants. These results can help control the local pollution. This study also 15 

indicated that integrating multiple Machine learning models improved the accuracy of fitting results 16 

effectively. For more accurate pollutant data, such models can be employed to fit the PM2.5 in the future 17 

with more parameters closely related to PM2.5. However, there are some vacant values in the results of 18 

this study. There are also no data for some areas. Thus, other satellite data can be used in future studies 19 

to solve this problem. 20 
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